Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone.

نویسندگان

  • Ying Tao
  • Ayelet Fishman
  • William E Bentley
  • Thomas K Wood
چکیده

Wild-type toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes toluene to p-cresol (96%) and oxidizes benzene sequentially to phenol, to catechol, and to 1,2,3-trihydroxybenzene. In this study T4MO was found to oxidize o-cresol to 3-methylcatechol (91%) and methylhydroquinone (9%), to oxidize m-cresol and p-cresol to 4-methylcatechol (100%), and to oxidize o-methoxyphenol to 4-methoxyresorcinol (87%), 3-methoxycatechol (11%), and methoxyhydroquinone (2%). Apparent Vmax values of 6.6 +/- 0.9 to 10.7 +/- 0.1 nmol/min/ mg of protein were obtained for o-, m-, and p-cresol oxidation by wild-type T4MO, which are comparable to the toluene oxidation rate (15.1 +/- 0.8 nmol/min/mg of protein). After these new reactions were discovered, saturation mutagenesis was performed near the diiron catalytic center at positions I100, G103, and A107 of the alpha subunit of the hydroxylase (TmoA) based on directed evolution of the related toluene o-monooxygenase of Burkholderia cepacia G4 (K. A. Canada, S. Iwashita, H. Shim, and T. K. Wood, J. Bacteriol. 184:344-349, 2002) and a previously reported T4MO G103L regiospecific mutant (K. H. Mitchell, J. M. Studts, and B. G. Fox, Biochemistry 41:3176-3188, 2002). By using o-cresol and o-methoxyphenol as model substrates, regiospecific mutants of T4MO were created; for example, TmoA variant G103A/A107S produced 3-methylcatechol (98%) from o-cresol twofold faster and produced 3-methoxycatechol (82%) from 1 mM o-methoxyphenol seven times faster than the wild-type T4MO (1.5 +/- 0.2 versus 0.21 +/- 0.01 nmol/min/mg of protein). Variant I100L produced 3-methoxycatechol from o-methoxyphenol four times faster than wild-type T4MO, and G103S/A107T produced methylhydroquinone (92%) from o-cresol fourfold faster than wild-type T4MO and there was 10 times more in terms of the percentage of the product. Variant G103S produced 40-fold more methoxyhydroquinone from o-methoxyphenol than the wild-type enzyme produced (80 versus 2%) and produced methylhydroquinone (80%) from o-cresol. Hence, the regiospecific oxidation of o-methoxyphenol and o-cresol was changed for significant synthesis of 3-methoxycatechol, methoxyhydroquinone, 3-methylcatechol, and methylhydroquinone. The enzyme variants also demonstrated altered monohydroxylation regiospecificity for toluene; for example, G103S/A107G formed 82% o-cresol, so saturation mutagenesis converted T4MO into an ortho-hydroxylating enzyme. Furthermore, G103S/A107T formed 100% p-cresol from toluene; hence, a better para-hydroxylating enzyme than wild-type T4MO was formed. Structure homology modeling suggested that hydrogen bonding interactions of the hydroxyl groups of altered residues S103, S107, and T107 influence the regiospecificity of the oxygenase reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alanine 101 and alanine 110 of the alpha subunit of Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase influence the regiospecific oxidation of aromatics.

Saturation mutagenesis was used to generate 10 mutants of toluene-o-xylene monooxygenase (ToMO) at alpha subunit (TouA) positions A101 and A110: A101G, A101I, A101M, A101VE, A101V, A110G, A110C, A110S, A110P, and A110T; by testing the substrates toluene, o-cresol, m-cresol, p-cresol, phenol, naphthalene, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol, o-xylene, and nitrobenzene, these positi...

متن کامل

Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering

for AICHE 2004 [15C12] Advances in Biocatalysis and Protein Engineering Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering A. Fishman, Y. Tao, W. E. Bentley, and T. K. Wood University of Connecticut, Storrs, CT University of Maryland, College Park, MD Oxygenases are promising biocatalysts for performing selecti...

متن کامل

Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol.

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-methylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) ...

متن کامل

Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone.

Saturation mutagenesis of the 2,4-dinitrotoluene dioxygenase (DDO) of Burkholderia cepacia R34 at position valine 350 of the DntAc alpha-subunit generated mutant V350F with significantly increased activity towards o-nitrophenol (47 times), m-nitrophenol (34 times), and o-methoxyphenol (174 times) as well as an expanded substrate range that now includes m-methoxyphenol, o-cresol, and m-cresol (w...

متن کامل

A Study of the Electrochemical Oxidation of Guaiacol

The electrochemical oxidation of guaiacol (2-methoxyphenol) on a treated disk of gold was studied by cyclic voltammetry. At low concentration, guaiacol undergoes one irreversible anodic peak . The current of this peak has a diffusional origin. For guaiacol concentrations higher than 4 . 10 mol dm, the voltammogram shows a post-peak. The effect of experimental data on the ratio of these two peak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 14  شماره 

صفحات  -

تاریخ انتشار 2004